UP Board Solutions for Class 11 Maths Chapter 14 Mathematical Reasoning (गणितीय विवेचन)

UP Board Solutions

UP Board Solutions for Class 11 Maths Chapter 14 Mathematical Reasoning (गणितीय विवेचन)

These Solutions are part of UP Board Solutions for Class 11 Maths. Here we have given UP Board Solutions for Class 11 Maths Chapter 14 Mathematical Reasoning (गणितीय विवेचन).

प्रश्नावली 14.1

प्रश्न 1.
निम्नलिखित वाक्यों में से कौन से कथन हैं ? अपने उत्तर के लिए कारण भी बतलाइए।
(i) एक महीने में 35 दिन होते हैं।
(ii) गणित एक कठिन विषय है।
(iii) 5 और 7 का योगफल 10 से अधिक होता है।
(iv) किसी संख्या का वर्ग एक सम संख्या होती है।
(v) किसी चतुर्भुज की भुजाएँ बराबर (समान) लंबाई की होती हैं।
(vi) इस प्रश्न का उत्तर दीजिए।
(vii) -1 और 8 का गुणनफल 8 है।
(viii) किसी त्रिभुज के सभी अंत: कोणों का योगफल 180° होता है।
(ix) आज एक तूफानी दिन है।
(x) सभी वास्तविक संख्याएँ सम्मिश्र संख्याएँ होती हैं।
हल:
(i) कथन : यह असत्य है क्योंकि महीने में 35 दिन नहीं होते।
(ii) वाक्य : गणित एक कठिन विषय है। इसकी कोई परिभाषा नहीं है। किसी एक के लिए सरल और दूसरे के लिए कठिन विषय हो सकता है।
(iii) कथन : यह कथन सत्य है।
(iv) कथन : यह असत्य है क्योंकि वर्ग संख्या विषम भी हो सकती है। जैसे 9, 25,….
(v) कथन : यह कथन असत्य है क्योंकि किसी चतुर्भुज की लंबाई असमान भी होती है।
(vi) वाक्य : यह एक आदेश है, इसलिए यह एक कथन नहीं है।
(vii) कथन : यह कथन असत्य है, -1 x 8 = – 8 ≠ 8.
(viii) कथन : यह कथन सत्य है। त्रिभुज के तीनों अंतः कोणों का योग 180° होता है।
(ix) वाक्य : यह स्पष्ट नहीं है कि कौन-सा दिन तूफानी है?
(x) कथन : यह सत्य कथन है।

प्रश्न 2.
वाक्यों मैं तीन ऐसे उदाहरण दीजिए जो कथन नहीं हैं। उत्तर के लिए कारण भी बताइए।
हल:
तीन उदाह्ररण इस प्रकार हो सकते हैं:
(i) इस कमरे में उपस्थित प्रत्येक व्यक्ति निडर है। यह एक कथन नहीं है, क्योंकि संदर्भ से स्पष्ट नहीं है कि यहाँ पर किस कमरे के बारे में कहा जा रहा है और निडर शब्द भी स्पष्ट रूप से परिभाषित नहीं है।
(ii) वह अभियान्त्रिकी की छात्री है। यह भी एक कथन नहीं है क्योंकि यह स्पष्ट नहीं है कि ‘वह’ वह कौन है।
(iii) “cos² θ का मान सदैव \frac { 1 }{ 2 }” से अधिक होता है। जब तक हमें यह ज्ञात न हो कि 8 क्या है हम यह नहीं कह सकते कि वाक्य सत्य है या नहीं।

प्रश्नावली 14.2

प्रश्न 1.
निम्नलिखित कथन का निषेधन लिखिए।
(i) चैन्नई, तमिलनाडु की राजधानी है।
(ii) √2 एक सम्मिश्र संख्या नहीं है।
(iii) सभी त्रिभुज समबाहु त्रिभुज नहीं होते हैं।
(iv) संख्या 2 संख्या 7 से अधिक है।
(v) प्रत्येक प्राकृत संख्या एक पूर्णाक होती है।
हल:
(i) चैन्नई, तमिलनाडु की राजधानी नहीं है।
(ii) √2 एक सम्मिश्र संख्या है।
(iii) सभी त्रिभुज समबाहु त्रिभुज हैं।
(iv) संख्या 2 संख्या 7 से बड़ी नहीं है।
(v) प्रत्येक प्राकृत संख्या एक पूर्णीक नहीं है।

प्रश्न 2.
क्या निम्नलिखित कथन युग्म (कथन के जोड़े) एक दूसरे के निषेधन हैं?
(i) संख्या x एक परिमेय संख्या नहीं है।
संग्ख्या x एक अपरिमेय संख्या नहीं है।
हल:
कथन ” संख्या x एक परिमेय संख्या नहीं है।” का निषेधन संख्या x एक परिमेय संख्या है। यो x एक अपरिमेय संख्या नहीं है। यही दूसरा कथन है। अतः दिए गए कथन एक दूसरे के निषेधन हैं।

(ii) संख्या एक परिमेय संख्या है।
संख्या एक अपरिमेय संख्या है।
हल:
कथन ” संख्या x एक परिमेय संख्या है।” का निषेधन संख्या ४ एक अपरिमेय संख्या है। जो कि दूसरे कथन के समान है।
अतः यह कथन एक दूसरे के निषेधन हैं।

प्रश्न 3.
निम्नलिखित मिश्र कथन के घटक कथन ज्ञात कीजिए और जाँचिए कि वे सत्य हैं या असत्य हैं।
(i) संख्या 3 अभाज्य है या विषम है।
(ii) समस्त (सभी) पूर्णांक धन या ऋण हैं।
(iii) संख्या 100 संख्याओं 3, 11 और 5 से भाज्य हैं।
हल:
(i) p : संख्या 3 अभाज्य है। यह कथन सत्य है।
q : संख्या 3 विषम संख्या है। यह कथन सत्य है।
(ii) p : सभी पूर्णांक धन हैं। यह कथन सत्य है।
q : सभी पूर्णांक ऋण हैं। यह कथन सत्य है।
(iii) p : 100, 3 से भाज्य है। यह कथन असत्य है।
q : 100, 11 से भाज्य है। यह कथन असत्य है।
r : 100, 5 से भाज्य है। यह कथन सत्य है।

प्रश्नावली 14.3

प्रश्न 1.
निम्नलिखित मिश्र कथनों में पहले संयोजक शब्दों को पहचानिए और फिर उनको घटक कथनों में विघटित कीजिए:
(i) सभी परिमेय संख्याएँ वास्तविक संख्याएँ होती हैं और सभी वास्तविक संख्याएँ सम्मिश्र संख्याएँ नहीं होती हैं।
हल:
संयोजक शब्द ‘और’
घटक p : सभी परिमेय संख्याएँ वास्तविक संख्याएँ होती हैं।
q : सभी वास्तविक संख्याएँ सम्मिश्र संख्याएँ नहीं होती हैं।

(ii) किसी पूर्णांक का वर्ग धन या ऋण होता है।
हल:
संयोजक शब्द ‘या’
घटक p : किसी पूर्णांक का वर्ग धन होता है।
q : किसी पूर्णा का वर्ग ऋण होता है।

(iii) रेत (बालू घूप में शीघ्र गर्म हो जाती है और रात्रि में शीघ्र ठंडी नहीं होती है।
हल:
संयोजक शब्द ‘और’
घटक p : रेत (बालू) धूप में शीघ्र गर्म हो जाती है।
q : रेत (बालू) रात्रि में शीघ्र ठंडी नहीं होती।

(iv) x = 2 और x = 3, समीकरण 3x² – x – 10 = 0 के मूल हैं।
हल:
संयोजक शब्द ‘और’
घटक p : x = 2, समीकरण 3x² – x – 10 = 0 का मूल है।
q : x = 3 समीकरण 3x² – x – 10 = 0 को मूल है।

प्रश्न 2.
निम्नलिखित कथनों में परिमाण वाचक वाक्यांश पहचानिए और कथनों के निषेधन लिखिए:
(i) एक ऐसी संख्या का अस्तित्व है, जो अपने वर्ग के बराबर है।
हल:
परिमाणवाचक वाक्यांश : एक ऐसी संख्या का अस्तित्व है।
कथन का निषेधन : ऐसी संख्या का अस्तित्व नहीं है जो अपने वर्ग के बराबर हो।

(ii) प्रत्येक वास्तविक संख्या x के लिए x, (x + 1) से कम होता है।
हल:
परिमाणवाचक वाक्यांश : ” प्रत्येक के लिए ”
p : प्रत्येक वास्तविक संख्या x के लिए x, x + 1 से कम होता है।
p का निषेधन = ~p = कम से कम एक वास्तविक संख्या 7 ऐसी है जो x + 1 से कम नहीं है।

(iii) भारत के हर एक राज्य/प्रदेश के लिए एक राजधानी का अस्तित्व है।
हल:
परिमाणवाचक वाक्यांश : एक ऐसे का अस्तित्व है।
कथन p : भारत के हर एक राज्य/प्रदेश के लिए एक राजधानी का अस्तित्व है।
p का निषेधन : ~p = भारत के हर एक राज्य/ प्रदेश के लिए एक राजधानी का अस्तित्व नहीं है।

प्रश्न 3.
जाँचिए कि क्या नीचे लिखे कथनों के जोड़े (युग्म) एक दूसरे के निषेधन हैं। अपने उत्तर के लिए कारण भी बतलाइए।
(i) प्रत्येक वास्तविक संख्याओं x और y के लिए x + y = y + x सत्य है।
(ii) ऐसी वास्तविक संख्याओं x और y का अस्तित्व है जिनके लिए x + y = y + x सत्य है।
हल:
कथन (i) और (ii) एक दूसरे के निषेधन नहीं है।

प्रश्न 4.
बतलाइए कि निम्नलिखित कथनों में प्रयुक्त ‘या’ ‘अपवर्जित है’ अथवा ‘अंतर्विष्ट’ है। अपने उत्तर के लिए कारण भी बतलाइए।
(i) सूर्य उदय होता है या चन्द्रमा अस्त होता है।
हल:
अपवर्जित : सूर्य उदय होता है और चन्द्रमा अस्त होता है। एक समय पर सूर्य उदय होगा या चन्द्रमा

(ii) ड्राइविंग लाइसेंस के आवेदन हेतु आपके पास राशन कार्ड या पासपोर्ट होना चाहिए।
हल:
अंतर्विष्ट : ड्राइविंग लाइसेंस के आवेदन हेतु राशन कार्ड या पास पोर्ट या दोनों मान्य है।
(iii) सभी पूर्णांक धन या ऋण होते है।
हल:
अपवर्जित : सभी पूर्णांक धन या ऋण होते हैं। परन्तु धन या ऋण दोनों नहीं हो सकते।

प्रश्नावली 14.4

प्रश्न 1.
निम्नलिखित कथन को वाक्यांश “यदि- तो” का प्रयोग करते हुए पाँच विभिन्न रूप में इस प्रकार लिखिए कि उनके अर्थ समान हों।
यदि एक प्राकृत संख्या विषम है तो उसका वर्ग भी विषम है।
हल:
(i) यदि एक प्राकृत संख्या विषम है तो अंर्तभाव है उसको वर्ग भी विषम है।
(ii) कोई प्राकृत संख्या विषम संख्या है केवल यदि उसका वर्ग विषम है।
(iii) यदि प्राकृत संख्या का वर्ग विषम नहीं है तो वह प्राकृत संख्या भी विषम नहीं होगी।
(iv) एक प्राकृत संख्या विषम है, इसके लिए यह अनिवार्य है कि उनका वर्ग भी विषम होगा।
(v) एक प्राकृत संख्या का वर्ग विषम है, इसके लिए यह पर्याप्त होगा कि वह संख्या विषम है।

प्रश्न 2.
निम्नलिखित कथनों के प्रतिधनात्मक और विलोम कथन लिखिए:
(i) यदि x एक अभाज्य संख्या है, तो x एक विषम है।
हल:
प्रतिधनात्मक कथन : यदि एक संख्या x विषम नहीं है तो x एक अभाज्य संख्या नहीं है।
विलोम कथन : यदि एक संख्या x विषम है तो x एक अभाज्य संख्या है।

(ii) यदि दो रेखाएँ समांतर हैं तो वे एक दूसरे को एक समतल में नहीं काटती हैं।
हल:
प्रतिधनात्मक कथन : यदि दो रेखाएँ एक दूसरे को समतल में काटती हैं तो रेखाएँ समांतर नहीं हैं।
विलोम कथन : अदि दो रेखाएँ एक दूसरे को एक ही समतल में नही काटती हैं तो रेखाएँ समांतर हैं।

(iii) किसी वस्तु के ठंडे होने का तात्पर्य (अंतर्भाव) है कि उसका तापक्रम कम है।
हल:
प्रतिधनात्मक कथन : यदि किसी वस्तु का तापमान कम नहीं है तो वह वस्तु ठंडी नहीं है।
विलोम कथन : यदि किसी वस्तु का तापमान कम है तो वह वस्तु ठंडी है।

(iv) आप ज्यामिति विषय को आत्मसात नहीं कर सकते यदि आपको यह ज्ञान नहीं है कि निगमनात्मक विवेचन किस प्रकार किया जाता है।
हल:
प्रतिधनात्मक कथन : यदि आपको यह ज्ञात है कि निगमनात्मक विवेचन किस प्रकार किया है तो आप ज्यामिति विषय को आत्मसात कर सकते हैं।
विलोम कथन : यदि आपको यह ज्ञात नहीं है कि निगमनात्मक विवेचन किस प्रकार किया जाता है तो आप ज्यामिन्नि विषय को आत्मसात नहीं कर सकते हैं।

(v) “x एक सम संख्या है” से तात्पर्य (अंतर्भाव) है कि x संख्या 4 से भाज्य है।
हल:
प्रतिधनात्मक कथन : यदि x संख्या 4 से भाज्य नहीं है तो x एक सम संख्या नहीं है।
विलोम कथन : यदि संख्या x, 4 से भाज्य है तो यह एक सम संख्या है।

प्रश्न 3.
निम्नलिखित कथनों में से प्रत्येक को ‘यदि–तो’ रूप में लिखिए:
(i) आपको नौकरी (काम) मिलने का तात्पर्य (अंतर्भाव) है कि आपकी विश्वसनियता अच्छी है।
हल:
यदि आपको नौकरी मिल गई है तो आपकी विश्वसनियता अच्छी है।

(ii) केले का पेड़ फूलेगा यदि वह एक माह तक गरम बना रहे।
हल:
यदि केले का पेड़ एक माह तक गरम बना रहे तो केले का पेड़ फूलेगा।

(iii) एक चतुर्भुज समांतर चतुर्भुज है यदि उसके विकर्ण एक-दूसरे को समद्विभाजित करे।
हल:
यदि किसी चतुर्भुज के विकर्ण एक दूसरे को समद्विभाजित करते हैं तो वह एक समांतर चतुर्भुज है।

(iv) कक्षा में ग्रेड A पाने के लिए यह अनिवार्य है कि आप पुस्तक के सभी प्रश्नों को सरल कर लेते है।
हल:
यदि आप कक्षा में A ग्रेड पाते हैं, तो आप पुस्तक के सभी प्रश्न हल कर लेते हैं।

प्रश्न 4.
नीचे (a) और (b) में प्रदत्त कथनों में से प्रत्येक के (i) में दिए कथन का प्रतिधनात्मक और विलोम कथन पहचानिए।
(a) यदि आप दिल्ली में रहते हैं तो आपके पास जाड़े के कपड़े हैं।
(i) यदि आपके पास जाड़े के कपड़े नहीं हैं, तो आप दिल्ली में नहीं रहते हैं।
हल:
प्रतिधनात्मक।

(ii) यदि आपके पास जाड़े के कपड़े हैं, तो आप दिल्ली में रहते हैं।
हल:
विलोम

(b) यदि एक चतुर्भुज समांतर चतुर्भुज है, तो उसके विकर्ण एक दूसरे को समद्विभाजित करते हैं।
(i) यदि किसी चतुर्भुज के विकर्ण एक दूसरे को समद्विभाजित नहीं करते हैं तो चतुर्भुज एक समांतर चतुर्भुज नहीं है।
हल:
प्रतिधमात्मक।

(ii) यदि चतुर्भुज के विकर्ण एक दूसरे को समद्विभाजित करते हैं तो वह समांतर चतुर्भुज है।
हल:
विलोम।

प्रश्नावली 14.5

प्रश्न 1.
सिद्ध कीजिए कि कथन यदि x एक ऐसी वास्तविक संख्या है कि x3 + 4x = 0, तो x = 0
(i) प्रत्यक्ष विधि द्वारा
(ii) विरोधोक्ति द्वारा
(iii) प्रतिधनात्मक कथन द्वारा
हल:
(i) प्रत्यक्ष विधि द्वारा
x3 + 4x = 0 या x (x² + 4) = 0
x = 0 या x² + 4 = 0
परन्तु x² + 4 ≠ 0, x ∈ R
अतः x = 0.

(ii) विरोधोक्ति द्वारा : माना x ≠ 0
यदि समीकरण x² + 4x = 0 का एक मूल p हो, तब
p3 + 4p = 0 या p(p² + 4) = 0
p = 0 या p² + 4 = 0
p² + 4 ≠ 0
p= 0 विरोधात्मक है x ≠ p के जो पूर्व निर्धारित है।
अर्थात् p = 0 या x = 0

(iii) प्रतिधनात्मक कथन द्वारा:
माना x = 0 सत्य नहीं है।
x ∈ R, x3 + 4x ≠ 0, और x ≠ 0 (माना गया है)
x (x² + 4) ≠ 0 यह सिद्ध करता है कि x² + 4x = 0 का x = 0 मूल है।

प्रश्न 2.
प्रत्युदाहरण द्वारा सिद्ध कीजिए कि कथन ” किसी भी ऐसी वास्तविक संख्याओं a और b के लिए, जहाँ a² = b² का तात्पर्य है कि a = b ” सत्य नहीं है।
हल:
माना जब a = 1, b = -1 तो a² = b²
परन्तु a ≠ b. अतः दिया गया कथन सत्य नहीं है।

प्रश्न 3.
प्रतिधनात्मक विधि द्वारा सिद्ध कीजिए कि निम्नलिखित कथन सत्य है।
p : यदि x एक पूर्णांक है और x² सम है तो x सम है।
हल:
माना x एक सम संख्या नहीं हैं।
x = 2n + 1
x² = (2n + 1)² = 4n² + 4n + 1 = 2 (2n² + 2n) + 1
यह एक विषम संख्या है। इस प्रकार यदि q सत्य नहीं है तो p भी सत्य नहीं है। अर्थात दिया हुआ कथन सत्य है।

प्रश्न 4.
प्रत्युदाहरण द्वारा सिद्ध कीजिए कि निम्नलिखित कथन सत्य नहीं हैं।
(i) p : यदि किसी त्रिभुज के कोण समान हैं, तो त्रिभुज एक अधिक कोण त्रिभुज है।
हल:
माना एक कोण = 90 + θ
तीनों कोण समान हों, तब
त्रिभुज के तीनों कोणों का योग = 3 (90 + θ) = 270 + 3θ
यह 180° के बराबर नहीं है।
त्रिभुज को कोई भी कोण अधिक कोण नहीं हो सकता अर्थात वह त्रिभुज अधिक कोण त्रिभुज नहीं हो सकता है।

(ii) q : समीकरण x² – 1 = 0 के मूल 0 और 2 के बीच स्थित नहीं है।
हल:
0 और 2 के बीच की संख्या 1 लीजिए।
x² – 1 = 0 में x = 1 रखने पर,
1 – 1 = 0,
अत: x = 1, दिए हुए समीकरण को संतुष्ट करता है।
इसलिए x = 1, समीकरण x² – 1 = 0 का मूल है और 0 और 2 के बीच स्थित हैं।
अतः दिया गया कथन सत्य नहीं है।

प्रश्न 5.
निम्नलिखित कथनों में से कौन से सत्य हैं और कौन से असत्य हैं। प्रत्येक दशा में अपने उत्तर के लिए वैध कारण बतलाइए:
(i) p : किसी वृत्त की प्रत्येक त्रिज्या वृत्त की जीवा होती है।
हल:
असत्य : त्रिज्या का एक सिरा केंद्र पर ओर दूसरा सिरा वृत्त पर होता हो तो वह जीवा नहीं होती है। अत: यह वृत्त की जीवा नहीं है।

(ii) q : किसी वृत्त का केंद्र वृत्त की प्रत्येक जीवा को समद्विभाजित करता है।
हल:
असत्य : वृत्त का केंद्र केवल व्यास को समद्विभाजित करता है। प्रत्येक जीवा केंद्र से होकर नहीं जाती है।
अत: वृत्त का केंद्र प्रत्येक जीवा को समद्विभाजित नहीं करता है।

(iii) r : एक वृत्त किसी दीर्घवृत्त की एक विशेष स्थिति है।
हल:
सत्य : दीर्घवृत्त का समीकरण \frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } =\quad 1
जब a = b तब \frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } =\quad 1या x² + y² = a²
अत: यह वृत्त का समीकरण है।

(iv) s : यदि x औरy ऐसे पूर्णाक हैं कि x > y, तो -x < -y हैं।
हल:
सत्य यदि x और y पूर्णांक हैं और x > y तो -x < -y (असमिकाओं के नियम से)

(v) t : √11 एक परिमेय संख्या है।
हल:
असत्य : √11 एक अपरिमेय संख्या है।

अध्याय 14 पर विविध प्रश्नावली

प्रश्न 1.
निम्नलिखित कथनों के निषेधन लिखिए:
(i) प्रत्येक धन वास्तविक संख्या x के लिए, संख्या x – 1 भी धन संख्या है।
हल:
एक ऐसी धन वास्तविक संख्या x को अस्तित्व है कि x – 1 धन संख्या नहीं है।

(ii) सभी बिल्लियाँ खरोंचती हैं।
हल:
सभी बिल्लियाँ खरोंचती नहीं हैं।

(iii) प्रत्येक वास्तविक संख्या के लिए या तो x > 1 या x < 1.
हल:
एक ऐसी वास्तविक संख्या x का अस्तित्व है कि न तो x > 1 और न ही x < 1.

(iv) एक ऐसी संख्या ४ का अस्तित्व है कि 0 < x < 1.
हल:
किसी ऐसी वास्तविक संख्या x का अस्तित्व नहीं है कि 0 < x < 1.

प्रश्न 2.
निम्नलिखित सप्रतिबंध कथनों (अंतर्भाव) में से प्रत्येक का विलोम तथा प्रतिधनात्मक कथन लिखिए:
(i) एक धन पूर्णाक अभाज्य संख्या है केवल यदि 1 और पूर्णांक स्वयं के अतिरिक्त उसका कोई अन्य भाजक नहीं है।
हल:
विलोम कथन : यदि एक धन पूर्णांक अभाज्य है, तो 1 तथा स्वयं के अतिरिक्त इसका कोई अन्य भाजक नहीं है।
प्रतिधनात्मक कथन : यदि एक धन पूर्णांक के 1 तथा स्वयं के अतिरिक्त अन्य भाजक भी हैं, तो वह धन पूर्णांक अभाज्य संख्या नहीं है।

(ii) मैं समुद्र तट पर जाता हूँ जब कभी धूप वाला दिन होता है।
हल:
विलोम कथन : यदि कभी धूप वाला दिन हो तो मैं समुद्र तट पर जाता हूँ।
प्रतिधनात्मक कथन : जब कभी धूप वाला दिन नहीं होता तो मैं समुद्र तट पर नहीं जाता।

(iii) यदि बाहर गर्म है, तो आपको प्यास लगती है।
हल:
विलोम कथन : यदि आपको प्यास लगी है, तो बाहर गर्म है।
प्रतिधनात्मक कथन : यदि आपको प्यास नहीं लगती है तो बाहर गर्म नहीं है।

प्रश्न 3.
निम्नलिखित कथनों में से प्रत्येक को ” यदि p तो q” के रूप में लिखिए।:
(i) सर्वर पर लॉग आन करने के लिए पासवर्ड का होना आवश्यक है।
(ii) जब कभी वर्षा होती है यातायात में अवरोध उत्पन्न होता है।
(iii) आप वेबसाइट में प्रवेश कर सकते हैं केवल यदि आपने निर्धारित शुल्क का भुगतान किया हो।
हल:
” यदि p तो q” के रूप में कथन
(i) यदि सर्वर पर लॉग आन है, तो पासवर्ड ज्ञात है।
(ii) यदि वर्षा होती है, तो यातायात में अवरोध उत्पन्न होता है।
(iii) यदि आप निर्धारित शुल्क का भुगतान करते हैं, तो आप बेवसाइट में प्रवेश कर सकते हैं।

प्रश्न 4.
निम्नलिखित कथनों में से प्रत्येक को ‘p यदि और केवल यदि q’ के रूप में पुनः लिखिएः
(i) यदि आप दूरदर्शन (टेलीविजन) देखते हैं, तो आपका मन मुक्त होता है तथा यदि आपका मन मुक्त है तो आप दूरदर्शन देखते हैं।
(ii) आपके द्वारा A ग्रेड प्राप्त करने के लिए यह अनिवार्य और पर्याप्त है कि आप गृहकार्य नियमित रूप से । करते हैं।
(iii) यदि एक चतुर्भुज समान कोणिक है, तो वह एक आयत होता है तथा यदि एक चतुर्भुज आयत है, तो वह समान कोणिक होता है।
हल:
‘p यदि और केवल यदि q’ के रूप में कथन
(i) आप टेलीविज़न देखते हैं यदि और केवल यदि आपका मन मुक्त होता है।
(ii) आप A ग्रेड प्राप्त करते हैं यदि और केवल यदि आप नियमित रूप से समस्त गृहकार्य करते हैं।
(iii) एक चतुर्भुज समान कोणिक है यदि और केवल यदि वह एक आयत है।

प्रश्न 5.
नीचे दो कथन दिए हैं,
p : 25 संख्या 5 का एक गुणज है।
q : 25 संख्या 8 का एक गुणज है।
उपरोक्त कथनों का संयोजक ‘और’ तथा ‘या’ द्वारा संयोजन करके मिश्र कथन लिखिए। दोनों दशाओं में प्राप्त मिश्र कथनों की वैधता जाँचिए।
हल:
(i) ‘और’ संयोजन द्वारा मिश्र कथन: 25 संख्या 5 और 8 का गुणज है। यह असत्य कथन है क्योंकि p और q दोनों सत्य नहीं हैं।
(ii) संयोजक ‘या’ द्वारा मिश्र कथने: 25 संख्या 5 या 8 का गुणज है। यह कथन सत्य है।

प्रश्न 6.
नीचे लिखे कथनों की वैधता की जाँच उनके सामने लिखित विधि द्वारा कीजिए।
(i) p : एक अपरिमेय संख्या और एक परिमेय संख्या का योगफल अपरिमेय होता है। (विरोधोक्ति विधि)
(ii) q : यदि n एक ऐसी वास्तविक संख्या है कि n > 3 तो n² > 9 (विरोधोक्ति विधि)
हल:
(i) मान लीजिए √a अपरिमेय और b परिमेय सेख्याएँ हों, तब
दोनों का योग b + √a = s
माना यह योग अपरिमेय नहीं है।
यदि s अपरिमेय नहीं है तो यह परिमेय संख्या है।
b + √a = \frac { p }{ q }…..(1)
जबकि p और q पूर्णांक हैं, q ≠ 0 तथा उनमें कोई समान गुणनखण्ड नहीं है।
समीकरण (1) से, √a = \frac { p }{ q }– b
बायाँ पक्ष = √a = एक अपरिमेय संख्या
दायाँ पक्ष = \frac { p }{ q }– b = एक परिमेय संख्या
चूँकि यह दोनों विरोधात्मक हैं।
अतः योग s परिमेय संख्या नहीं हो सकती।

(ii) माना n² > 9 नहीं है जबकि n > 3
n = 3 + a रखने पर
n = a + 3
n² = (a + 3)² = a² + 6a + 9 = 9 + (a² + 6a)
n² > 9
पूर्वनिर्धारित कथन और यह कथन विरोधात्मक है।
अतः जब x > 3 तो x² > 9

प्रश्न 7.
निम्नलिखित कथन को पाँच भिन्न-भिन्न तरीकों से इस प्रकार व्यक्त कीजिए कि उनके अर्थ समान हों।
q : यदि एक त्रिभुज समान कोणिक है तो वह एक अधिक कोण त्रिभुज है।
हल:
पाँच समान अर्थ वाले कथन :
(i) कथन ”एक त्रिभुज समान कोणिक है’ का अंतर्भाव है कि यह अधिक कोण त्रिभुज है।
(ii) एक त्रिभुज के अधिक कोण त्रिभुज होने के लिए यह पर्याप्त है कि यह समान कोणिक है।
(iii) एक त्रिभुज समान कोणिक है यदि और केवल यदि त्रिभुज अधिक कोण त्रिभुज है।
(iv) एक त्रिभुज को समान कोणिक होने के लिए यह अनिवार्य है कि त्रिभुज अधिक कोण त्रिभुज हो।
(v) यदि एक त्रिभुज अधिक कोण त्रिभुज नहीं है तो वह समान कोणिक त्रिभुज नहीं है।

We hope the UP Board Solutions for Class 11 Maths Chapter 14 Mathematical Reasoning (गणितीय विवेचन) help you. If you have any query regarding UP Board Solutions for Class 11 Maths Chapter 14 Mathematical Reasoning (गणितीय विवेचन)

Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!
Algebra Calculator is a calculator that gives step-by-step help on algebra problems.Algebra calculator
+